MULTI-LAYER BUTTERFLY MATRIX FACTORIZATION

PROBLEM: Approximate $\mathbf{A} \in \mathbb{C}^{2^{J} \times 2^{J}}$ by a product of J butterfly factors.

BUTTERFLY STRUCTURE: J factors $\mathbf{X}^{J}, \ldots, \mathbf{X}^{1}$ are called butterfly factors (BF) if we have $\mathbf{X}^{\ell} \in \mathbb{C}^{2^{\prime} \times 2^{\prime}}$ and $\operatorname{supp}\left(\mathbf{X}^{\ell}\right) \subseteq \operatorname{supp}\left(\mathbf{S}^{\ell}\right), \forall 1 \leq \ell \leq J$ where $\operatorname{supp}(\mathbf{Z})=\left\{(i, j) \mid \mathbf{Z}_{i, j} \neq 0\right\}$ and $\mathbf{S}^{\ell}:=\mathbf{I}_{N / 2^{\epsilon}} \otimes\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \otimes \mathbf{I}_{2^{\ell-1}} \in\{0,1\}^{2^{J} \times 2^{J}}$. Example:

The Hadamard transform \mathscr{H} and its butterfly factors MATHEMATICAL FORMULATION:

$$
\begin{equation*}
\underset{\mathbf{X}^{\prime}, \ldots, \mathbf{X}^{1}}{\text { Minimize }}\left\|\mathbf{A}-\prod_{\ell=1}^{J} \mathbf{X}^{\ell}\right\|^{2} \quad \text { such that } \mathbf{X}^{J}, \ldots, \mathbf{X}^{1} \text { are } \mathrm{BF} \tag{1}
\end{equation*}
$$

OBJECTIVE: An algorithm which is more efficient than classical gradient descent, with theoretical guarantee.

BACKGROUND: FIXED SUPPORT MATRIX FACTORIZATION

PROBLEM: Given $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{S}^{L} \in\{0,1\}^{m \times r}$ and $\mathbf{S}^{R} \in\{0,1\}^{r \times n}$:
$\underset{(\mathbf{X} \mathbf{Y})}{\operatorname{Minimize}} \quad\|\mathbf{A}-\mathbf{X Y}\|_{F}^{2}, \operatorname{s.t} \operatorname{supp}(\mathbf{X}) \subseteq \operatorname{supp}\left(\mathbf{S}^{L}\right), \operatorname{supp}(\mathbf{Y}) \subseteq \operatorname{supp}\left(\mathbf{S}^{R}\right)$
(X,Y)
OBSERVATION: Decomposition XY ($\mathbf{Z}_{\mathbf{\sigma}, i}, \mathbf{Z}_{i,}$, are i th column/row of $\left.\mathbf{Z}\right)$

RESULT: If $\left\{\operatorname{supp}\left(\mathbf{X}_{., i} \mathbf{Y}_{i, \boldsymbol{O}}\right) \mid i=1, \ldots, r\right\}$ are pairwise disjoint, (2) is polynomially solvable and identifiable [1,2].

MAIN CONTRIBUTION: HIERARCHICAL METHOD

MAIN IDEA: Recursively use algorithms for (2) to factorize a matrix into two factors at each intermediate level of the hierarchy.

Unbalanced

Balanced

Two strategies to perform hierarchical factorization. Each corresponds to a tree INPUT: A matrix $\mathbf{Z}=\mathbf{X}^{J} \ldots \mathbf{X}^{1}$ where $\mathbf{X}^{J}, \ldots, \mathbf{X}^{1}$ are butterfly factors.
THEORETICAL GUARANTEE: For any choice of tree, the hierarchical method will yield J factors $\overline{\mathbf{X}}^{J}, \ldots, \overline{\mathbf{X}}^{1}$ such that:

1) Exact factorization: $\mathbf{Z}=\overline{\mathbf{X}}^{J} \ldots \overline{\mathbf{X}}^{1}$
2) Recovery: $\mathbf{X}^{\ell}=\mathbf{D}^{\ell-1} \overline{\mathbf{X}}^{\ell}\left(\mathbf{D}^{\ell}\right)^{-1}$ where $\mathbf{D}^{J}, \ldots, \mathbf{D}^{0}$ are invertible diagonal matrices satisfying $\mathbf{D}^{0}=\mathbf{D}^{J}=\mathbf{I}_{2}$.
EXPERIMENTAL RESULT: Comparison between the state-of-the-art method [3] (ADAM + LBFGS) and our methods (unbalanced and balanced).

Precision and running time of [3] and our methods in the factorization of the Discrete Fourier Transform of size $512(J=9)$

Running time of balanced and unbalanced strategies factorizing a noisy version of a product of J butterfly factors, $1 \leq J \leq 13$.

REFERENCES

[1]: Q.T. Le, E. Riccietti and R. Gribonval, "Spurious Valleys, Spurious Minima and NP-hardness of Sparse Matrix Factorization With Fixed Support", arXiv preprint arXiv:2112.00386, 2021.
[2]: L.Zheng, E. Riccietti and R. Gribonval, "Efficient Identification of Butterfly Sparse Matrix Factorization", arXiv preprint, arXiv:2110.01235, 2022.
[3]: T. Dao, A. Gu, M. Eichhorn, A. Rudra and C. Re, "Learning Fast Algorithms for Linear Transforms Using Butterfly Factorization", 36th International Conference of Machine Learning, June 2019.

