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BUTTERFLY STRUCTURE:  factors  are called butterfly factors 
(BF) if we have  and  where 

 and . 
Example:

J XJ, …, X1

Xℓ ∈ ℂ2J×2J supp(Xℓ) ⊆ supp(Sℓ), ∀1 ≤ ℓ ≤ J
supp(Z) = {(i, j) ∣ Zi, j ≠ 0} Sℓ := IN/2ℓ ⊗ [1 1

1 1] ⊗ I2ℓ−1 ∈ {0,1}2J×2J

MAIN CONTRIBUTION: HIERARCHICAL METHOD 
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MATHEMATICAL FORMULATION: 

   Minimize 
XJ,…,X1

∥A −
J

∏
ℓ=1

Xℓ∥2 such that XJ, …, X1 are BF (1)

The Hadamard transform  and its butterfly factorsℋ

BACKGROUND: FIXED SUPPORT MATRIX FACTORIZATION
PROBLEM: Given : A ∈ ℝm×n, SL ∈ {0,1}m×r and SR ∈ {0,1}r×n

Minimize
(X,Y)

∥A − XY∥2
F,  s.t supp(X) ⊆ supp(SL), supp(Y) ⊆ supp(SR) (2)

SL SR

supp(X∙,1Y1,∙) supp(X∙,2Y2,∙) supp(X∙,3Y3,∙)

XY X∙,3Y3,∙X∙,2Y2,∙X∙,1Y1,∙= + +

RESULT: If  are pairwise disjoint,  is 
polynomially solvable and identifiable [1,2]. 

{supp(X∙,iYi,∙) ∣ i = 1,…, r} (2)

MAIN IDEA: Recursively use algorithms for  to factorize a matrix into two 
factors at each intermediate level of the hierarchy.

(2)

Two strategies to perform hierarchical factorization. Each corresponds to a tree

Unbalanced Balanced

INPUT: A matrix  where  are butterfly factors. 
THEORETICAL GUARANTEE: For any choice of tree, the hierarchical method will 
yield  factors  such that: 
1) Exact factorization:   
2) Recovery:  where  are invertible diagonal matrices 
satisfying .  

Z = XJ…X1 XJ, …, X1

J X̄J, …, X̄1

Z = X̄J…X̄1

Xℓ = Dℓ−1X̄ℓ(Dℓ)−1 DJ, …, D0

D0 = DJ = I2J

EXPERIMENTAL RESULT: Comparison between the state-of-the-art method [3] 
(ADAM + LBFGS) and our methods (unbalanced and balanced).

Precision and running time of [3] and our 
methods in the factorization of the Discrete 

Fourier Transform of size 512 (J = 9)

PROBLEM: Approximate  by a product of  butterfly factors.A ∈ ℂ2J×2J J

OBJECTIVE: An algorithm which is more efficient than classical gradient 
descent, with theoretical guarantee.

OBSERVATION: Decomposition  (  are th column/row of )XY Z∙,i, Zi,∙ i Z
Running time of balanced and unbalanced 
strategies factorizing a noisy version of a 
product of  butterfly factors, .J 1 ≤ J ≤ 13

Ours
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